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1
NICKEL-METAL HYDRIDE/HYDROGEN
HYBRID BATTERY USING ALKALI ION
CONDUCTING SEPARATOR

RELATED APPLICATIONS

This application claims priority to, and the benefit of, pro-
visional U.S. Patent Application No. 61/438,328 filed on Feb.
1, 2011, which was a continuation in part, and claimed prior-
ity to, and the benefit of, U.S. application Ser. No. 11/944,719
filed on Nov. 26, 2007 entitled Nickel-Metal Hydride Battery
Using Alkali Ton Conducting Separator, issued on Sep. 6,
2011 as U.S. Pat. No. 8,012,621. This application is also a
continuation in part of, and claims priority to, both U.S.
application Ser. Nos. 13/189,176 and 13/189,177, each filed
on Jul. 22, 2011, which applications were divisional applica-
tions of U.S. application Ser. No. 11/944,719, filed Nov. 26,
2007 now U.S. Pat. No. 8,012,621. U.S. application Ser. No.
13/189,176 issued on Apr. 17, 2012 as U.S. Pat. No. 8,159,
192. U.S. application Ser. No. 13/189,177 issued on May 13,
2014 as U.S. Pat. No. 8,722,221. These applications and
patents are incorporated herein by reference.

BACKGROUND OF THE INVENTION

This invention relates to a nickel-metal hydride/Hydrogen
hybrid battery that includes a non-porous, alkali ion conduct-
ing separator.

Nickel-metal hydride storage batteries are widely used for
the power sources of cordless electronic equipment, power
tools, electric vehicles and the like. Conventional nickel-
metal hydride batteries are composed of a positive electrode
containing nickel hydroxide, a negative electrode containing
a hydrogen-absorbing metal alloy, a microporous separator
interposed between the positive and negative electrodes, and
an electrolyte.

Nickel hydrogen battery (Ni—H,) is a choice battery in
many aerospace applications, especially geo-synchronous
(GEO) and low earth-orbit (LEO) satellites. Recently, nickel-
hydrogen batteries have also been used in terrestrial applica-
tions. The difference with a nickel-metal hydride battery is
the use of hydrogen in a pressurized cell of up to 1200 psi
(82.7 bar). The Ni—H, battery comprises a positive electrode
containing nickel hydroxide, a negative hydrogen electrode
utilizes a teflon-bonded platinum black catalyst, and a zirco-
nia cloth separator. This battery has a long cycle life, high
specific energy, high power density, and also exhibits toler-
ance for overcharge. Its disadvantages include an expensive
initial cost, as well as low volumetric energy density.

Self-discharge is a phenomenon in many rechargeable bat-
teries in which internal chemical reactions reduce the stored
charge of the battery without any connection between the
electrodes. Self-discharge decreases the shelf-life of batteries
and causes them to have less charge than expected when
actually put to use. How fast self-discharge in a battery occurs
is dependent on the type of battery and temperature. Nickel-
based batteries typically are significantly affected by self-
discharge (nickel cadmium, 15-20% per month; nickel metal
hydride, 30% per month; nickel hydrogen proportional to
hydrogen pressure). Self-discharge is a chemical reaction and
tends to occur more quickly at higher temperatures. Storing
batteries at lower temperatures may reduce the rate of self-
discharge and preserve the initial energy stored in the battery.

Without being bound by theory, it is believed the self-
discharge problem associate with nickel metal hydride bat-
teries is a result of hydrogen passing through the porous
separator.
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2

It would be an improvement in the art to provide a nickel
metal hydride battery with reduced or limited self-discharge.

SUMMARY OF THE INVENTION

In accordance with the present invention, there is provided
herein a nickel-metal hydride (hydrogen) hybrid battery that
contains a positive electrode containing nickel hydroxide and
a negative electrode containing a reversible hydrogen elec-
trode. In one embodiment, the negative electrode is a combi-
nation electrode containing a hydrogen storage alloy elec-
trode. The battery also contains a separator having a
substantially non-porous alkali ion conducting material dis-
posed between the positive electrode and the negative elec-
trode.

In accordance with the present invention, there is also
provided method of charging a nickel-metal hydride (hydro-
gen) hybrid battery having a positive electrode containing
nickel hydroxide, a combination negative electrode contain-
ing a hydrogen storage alloy electrode and a reversible hydro-
gen electrode, an alkaline electrolyte, and a separator com-
prising a substantially non-porous alkali ion conducting
material. In one embodiment, the method includes the steps
of applying an electric charging potential to the positive and
negative electrodes to cause the following reaction to occur at
the positive electrode:

Ni(OH),+MeOH—->NiOOH+H,0+Me*+e™

and to cause the following reactions to occur at the negative
electrode:

M+H,O+e"+Me*—MH,_,+MeOH

H,0+e +Me*—12H,+MeOH

M in the forgoing reactions may be a hydrogen absorbing
alloy, H,, may be absorbed hydrogen, and Me may be an
alkali metal.

The method may also include the step of conducting Me+
ions across the alkali ion conducting separator from the posi-
tive electrode to the negative electrode. In one embodiment,
the positive electrode is the electrode bearing a positive
charge on discharge and the negative electrode bears a nega-
tive charge on discharge.

In accordance with the present invention, there is also
provided a method of discharging a nickel-metal (hydrogen)
hybrid battery having a positive electrode containing nickel
hydroxide, a combination negative clectrode containing a
hydrogen storage alloy electrode and a reversible hydrogen
electrode, an alkaline electrolyte, and a separator comprising
a substantially non-porous alkali ion conducting material.
The method includes the step of generating an electric poten-
tial between the positive and negative electrodes due in part to
the following reaction occurring at the positive electrode:

NiOOH+H,0+Me*+e—Ni(OH),+MeOH
and due in part to the following reaction occurring at the

negative electrode:

MH, ,+M OH—M+H,0+e +Me*

Y2Hy+MeOH—+H,0+e +Me*

In one embodiment, M is a hydrogen absorbing alloy, H_,
is absorbed hydrogen, and Me is an alkali metal. The method
includes the step of conducting Me™ ions across the alkali ion
conducting separator from the negative electrode to the posi-
tive electrode.
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BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

In order that the manner in which the above-recited and
other features and advantages of the invention are obtained
will be readily understood, a more particular description of
the invention briefly described above will be rendered by
reference to specific embodiments thereof that are illustrated
in the appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1 is a schematic representation of one embodiment of
a Ni-MH/H, hybrid battery within the scope of the invention.

FIG. 2 is a schematic representation of another embodi-
ment of a Ni-MH/H, hybrid battery within the scope of the
invention.

DETAILED DESCRIPTION

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” or similar language means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of
the phrases “in one embodiment,” “in an embodiment,” and
similar language throughout this specification may, but do not
necessarily, all refer to the same embodiment.

Furthermore, the described features, structures, or charac-
teristics of the invention may be combined in any suitable
manner in one or more embodiments. In the following
description, numerous specific details are provided, such as
examples of cells, membranes, processes, methods, etc., to
provide a thorough understanding of embodiments of the
invention. One skilled in the relevant art will recognize, how-
ever, that the invention may be practiced without one or more
of'the specific details or method steps, or with other methods,
components, materials, and so forth. In other instances, well-
known structures, materials, or operations are not shown or
described in detail to avoid obscuring aspects of the invention.

The embodiments of the present invention will be best
understood by reference to the drawings, wherein like parts
are designated by like numerals throughout. It will be readily
understood that the components of the present invention, as
generally described and illustrated in the figures herein, could
be arranged and designed in a wide variety of different con-
figurations. Thus, the following more detailed description of
the embodiments of the nickel-metal hydride battery using an
alkali metal conducting separator within the scope of the
present invention as represented in FIGS. 1 and 2, is not
intended to limit the scope of the invention, as claimed, but is
merely representative of the embodiments of the invention.

Referring to FIG. 1, there is provided a schematic repre-
sentation of a Ni-MH/H, hybrid battery within the scope of
the invention. In this embodiment, battery includes a positive
nickel hydroxide electrode, a negative electrode, and an alkali
ion conducting separator. The battery also includes an alka-
line electrolyte, such as an alkali metal hydroxide. The elec-
trolyte may contain other minor constituents to enhance cell
performance. The alkaline electrolytes may include by way of
non-limiting example, sodium hydroxide, lithium hydroxide,
sodium carbonate, lithium carbonate, and the like. In one
embodiment, alkaline electrolytes may be positioned on
either side of the separator and may be different from one
another. The substantially non-porous nature of the separator
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4

allows for different electrolytes having different enhancers or
constituents to be used on one side of the separator without
effecting electrode performance on the other side of separa-
tor. Thus for example, different alkaline electrolytes having
different alkalinities may be either side of the separator.

The positive electrode may comprise nickel hydroxide (Ni
(OH),) or other materials used in conventional nickel-metal
hydride batteries. In some embodiments, the positive elec-
trode may be a pasted or sintered-type material.

The negative electrode in the present invention may con-
tain a reversible hydrogen electrode. In another embodiment,
the negative electrode is a combination of MH and H, elec-
trodes, wherein different charge/discharge reactions happen
at the respective electrodes.

FIG. 1 shows a combination cathode. The MH cathode is
same as or similar to traditional Ni-MH battery cathode and
the hydrogen cathode is a gas diffusion type of cathode.

The MH negative electrode may comprise a hydrogen-
absorbing alloy. Such alloys are known in the art. Examples of
early hydrogen-absorbing alloys include NiFe, Mg,Ni, and
LaNis. These hydrogen-absorbing alloys combine metal (A)
whose hydrides generate heat exothermically with metal (B)
whose hydrides generate heat endothermically to produce the
suitable binding energy so that hydrogen can be absorbed and
released at or around normal temperature and pressure levels.
Depending on how metals A and B are combined, the alloys
are classified into the following types: AB (TiFe, etc.), AB,
(ZnMn,, etc.), AB; (LaNis, etc.) and A,B (Mg, Ni, etc.).

Of the foregoing general types of hydrogen absorbing
metal alloys, two general classes of metallic alloys are iden-
tified as possessing characteristics desirable for battery cell
use because of their good charge and discharge efficiency and
durability. These are rare earth/nickel alloys generally based
around LaNis (the so-called AB; class of alloys) and alloys
consisting primarily of titanium and zirconium (designated as
AB, alloys). In both cases, some fraction of the base metals is
often replaced with other metallic elements. The AB formu-
lation appears to offer the best set of features for commercial
nickel-metal hydride cell applications. The metal hydride
electrode has a theoretical capacity approximately 40 percent
higher than the cadmium electrode in a nickel-cadmium
couple. As a result, nickel-metal hydride cells provide energy
densities that are 20-40 percent higher than the equivalent
nickel-cadmium cell.

The reversible hydrogen electrode comprises a catalyst
comprising platinum dispersed on a carbon in the form of a
gas diffusion electrode. The catalyst may be a platinum-type
electro catalyst. Gas diffusion electrodes are used in chlor-
alkali electrolysis, metal-air batteries, and fuel cells. In one
embodiment, the reversible hydrogen may be a gas diffusion
electrode that interfaces with an alkaline electrolyte and a
gaseous phase for electrochemical oxidation of hydrogen, the
gas diffusion electrode comprising at least one reaction layer
having dispersed therein a platinum-type catalyst, wherein
the reaction layer is in fluid communication with the alkaline
electrolyte and wherein the gas diffusion layer is in fluid
communication with a gas comprising hydrogen.

A gas diffusion electrode has a multilayer structure com-
posed of a gas diffusion layer, a reaction layer, and a current
collector for electrical connection. Gas phase hydrogen is
exposed to the gas diffusion layer. The reaction layer resides
between the gas diffusion layer and the electrolyte. After
passing through the gas diffusion layer, hydrogen is con-
sumed through a reduction reaction (on discharge) on an
hydrogen reduction catalyst in the reaction layer.

The gas diffusion layer is required to allow the hydrogen to
pass there through rapidly and to diffuse uniformly into the



US 9,209,445 B2

5

entire reaction layer. The gas diffusion layer is also required
to prevent the electrolyte from permeating to the gas phase.
The gas diffusion layer is comprised of a material formed of
carbon particles bonded to each other with a material, such as
polytetrafluoroethylene, having high water repellent proper-
ties. The gas diffusion layer must also conduct electrons from
the current collector to the reaction layer.

The reaction layer contains uniformly dispersed hydrogen
reduction catalyst particles in electronic continuity with the
gas diffusion layer and current collector. In the reaction layer,
a large interface area is formed among the oxygen, electro-
lyte, electrons, and the oxygen reduction catalyst.

Mainly noble metals such as platinum and silver, dispersed
in or supported on carbon black in the reaction layer, have
been used and investigated as hydrogen reduction catalysts
for concentrated alkaline solution.

The current collector may be, for example, a wire mesh or
a foam material, which is composed of nickel, silver, or the
like.

FIG. 1 shows that the negative electrode is made by placing
the reversible hydrogen electrode adjacent to the hydrogen
storage alloy electrode such that the reaction layer of the
reversible hydrogen electrode is facing the hydrogen storage
alloy electrode and the gas diffusion layer is facing the hydro-
gen gas.

Also understood is that the advantages of the present inven-
tion described herein also apply to a Ni—H, battery without
metal absorbing anode but with a substantially reversible
hydrogen electrode with an alkaline conductive separator
between anode and cathode, with sufficient alkali metal elec-
trolyte to carry the current across the membrane with each
charge and discharge. This embodiment is partially depicted
in FIG. 1 except in this embodiment there is no hydrogen
absorbing metal and the negative electrode.

FIG. 2 shows a second embodiment where the hydrogen
absorbing alloy electrode material is combined with the
reversible hydrogen electrode material to form the combina-
tion negative electrode. One way to form the combination
negative electrode is to mix hydrogen absorbing alloy elec-
trode material (mischmetal) with the platinum black catalyst
(for reversible hydrogen reaction) and the alkaline electrolyte
to form the combination negative electrode or anode as a
unitary component. Alternatively the platinum black and/or
the alkaline electrolyte may be dispersed on the hydrogen
absorbing alloy electrode material (mischmetal) itself. In yet
another embodiment, the combination negative electrode
comprises hydrogen storage alloy material, an alkaline elec-
trolyte, and the reaction layer material of the reversible hydro-
gen electrode. In yet another embodiment, the combination
negative electrode includes the hydrogen storage alloy mate-
rial, the alkaline electrolyte and the materials from both gas
diffusion and reaction layers of the reversible hydrogen elec-
trode mixed and formed into a single component. Another
way to form the combination negative electrode is to mix
hydrogen absorbing alloy electrode material (mischmetal)
with the reaction layer material of the gas diffusion electrode
(for reversible hydrogen reaction) and the alkaline electrolyte
to form the combined anode. The mixtures or combinations of
these embodiments may be homogeneous or nonhomoge-
neous. Accordingly, the hydrogen storage alloy electrode
reversibly absorbs hydrogen. Thus, the terms hydrogen stor-
age alloy electrode and hydrogen absorbing alloy electrode
may be used interchangeably herein throughout as context
permits.
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The charge and discharge reactions for nickel-metal
hydride (hydrogen) hybrid battery within the scope of the
invention, using sodium as a representative alkali metal, are
shown below:

Positive electrode:  Ni(OH), + NaOH — NiOOH + (charge)
H,O+Na*+e”
NiOOH + H,0 + Na* + (discharge)
¢~ — Ni(OH), + NaOH

Negative electrode: M+ H,O+e™ +Na* — MH,, + (charge)
NaOH

Negative electrode:  H,O + e~ + Na* — 42H, + NaOH (charge)
MH,;, + NaOH - M + H,O +e™ + (discharge)
Na*
Y5H, + NaOH - H,O +e™ + (discharge)
Na*

Overall reaction for the Ni-MH portion of the battery is:

Ni(OH),+M—=NiOOH+MH,,, (charge)

NiOOH+MH,,—Ni(OH),+M (discharge)

Where M is a hydrogen absorbing alloy and H,,, is absorbed
hydrogen.
Overall reaction for the Ni—H, portion of the battery is:

Ni(OH),—NiOOH+Y2H, (charge)

NiOOH+Y2H,—>Ni(OH), (discharge)

Accordingly, the reversible hydrogen anode oxidizes
hydrogen to water during charge and reduces water back to
hydrogen during discharge.

The capacity distribution between the two negative elec-
trodes may be adjusted so that the either of the charge/dis-
charge reactions for Ni-MH or Ni—H, are predominant. This
means that one of the negative electrode possesses a greater
capacity than the other. It may be that one of the negative
electrode will reach full capacity first as the cell is charged/
discharged before the other one. Thus in one embodiment, the
hydrogen storage alloy electrode and the reversible hydrogen
electrode have different charge storage capacities.

In accordance with the present invention, there is provided
herein a nickel-metal hydride (hydrogen) hybrid battery that
contains an alkali ion conducting separator configured to
selectively transport alkali ions. The nickel-metal hydride
(hydrogen) combination battery is structurally similar to con-
ventional nickel-metal hydride and nickel-hydrogen batteries
and contains a positive electrode and a negative electrode.
One difference between the traditional Ni-MH and Ni—H,
compared to the present battery is that an alkali ion conduct-
ing separator is disposed between the positive and negative
electrodes. The separator may be substantially non-porous.

The separator in one embodiment is an alkali ion conduct-
ing solid electrolyte configured to selectively transport alkali
ions. It may be a specific alkali ion conductor. For example,
the separator may be a solid MeSICON (Metal Super lon
CONducting) material, where Me is Na, K, Li or a combina-
tion thereof. The alkali ion conducting separator may com-
prise a material having the formula Me,, 7Zr,Si.P; O,
where O=x<3, and where Me is Na, K, Li or a combination
thereof. Other alkali ion conducting solid electrolytes may
comprise a material having the formula Me,RESi1,0, , where
Me is Na, K, Li or combinations thereof, and where RE is Y,
Nd, Dy, Sm, or any mixture thereof. The alkali ion conducting
separator may comprise a non-stoichiometric alkali-deficient
material  having the formula (MesRESi,O},), s
(RE,05.2810,),, where Me is Na, K, Li, or a combination
thereof, where RE is Nd, Dy, Sm, or any mixture thereof, and
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where 9 is the measure of deviation from stoichiometry. In
one embodiment, the separator comprises a material having
the formula Na, , Zr*Si P,_ O, , where O=x=3. The alkaliion
conducting separator may also be beta-alumina.

The alkali ion conducting separator may be configured in
the form of a monolithic flat plate, a monolithic tube, a mono-
lithic honeycomb, or supported structures of the foregoing.
The alkali ion conducting separator may be a flexible sheet of
the polymer configured in various forms applicable to the
intended application. The alkali ion conducting separator
may be a flexible sheet composed of a mixture of polymer and
ceramic and configured in a variety of forms. The alkali ion
conducting separator may be configured as a layered alkali
ion conducting ceramic-polymer composite membrane com-
prising alkali ion selective polymers layered on alkali ion
conducting ceramic solid electrolyte materials.

In the present battery using the alkali metal ion conducting
separator, the current carrying species in the electrolyte are
exclusively alkali metal ions. Also the concentrations of the
electrolyte change at both electrodes during battery operation
because the non porous separator prevents mixing of electro-
lyte from both the compartments. This advantageously pre-
vents transport of unwanted species from one electrode to the
other and substantially eliminates capacity loss and self dis-
charge. In one embodiment of the invention, the separator is
a substantially non-porous ceramic separator material. The
substantially non-porous ceramic separator material may
include pockets of porosity, but it should not have “through-
porosity.” “Substantially non-porous” in some embodiments,
means less than or equal to 5% porosity. The substantially
non-porous separator is preferably hermetic or gas-imperme-
able. However, the substantially non-porous separator used
within the scope of the present invention may possess a trace
amount of through porosity and/or gas permeability. The term
substantially non-porous is intended to differentiate the prior
art separators that are substantially porous.

The separator conducts alkali ions, but is substantially
impermeable to hydrogen. The term “substantially imperme-
able to hydrogen” means that the separator is greater than or
equal to 95% impermeable to hydrogen. Without being bound
by theory, it is presently believed that self-discharge of the
nickel-metal hydride and nickel-hydrogen batteries may be
substantially reduced or eliminated by preventing hydrogen
from passing from the negative electrode to the positive elec-
trode. The solid electrolyte separator being non porous pre-
vents any hydrogen transport to the positive electrode while
the polymer separator will allow some diffusion of hydrogen
although lower than a microporous separator commonly used
in the prior art. The Ni-MH/H, hybrid battery within the
scope of the present invention can be stored and used at higher
temperature than the prior art because of the minimal self
discharge.

The combination of highly reversible hydrogen negative
electrode and hydrogen storage alloy electrode should result
in longer charge/discharge cycle life than conventional Ni-
MH battery. The presence of substantially hydrogen imper-
meable solid electrolyte separator prevents hydrogen con-
sumption at the positive electrode and therefore the battery
should have a longer shelf-life than conventional Ni-MH or
Ni—H, batteries

In some embodiments, the nickel-metal hydride battery
may be operated at temperatures from about —40° C. to about
120° C.

A method of charging a nickel-metal hydride (hydrogen)
hybrid battery having a positive electrode containing nickel
hydroxide, a combination negative electrode containing a
hydrogen storage alloy electrode and a reversible hydrogen
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electrode, an alkaline electrolyte, and a separator comprising
a substantially non-porous alkali ion conducting material
includes the steps of applying an electric charging potential to
the positive and negative electrodes to cause the following
reaction to occur at the positive electrode:

Ni(OH),+MeOH—->NiOOH+H,0+Me*+e™

and to cause the following reactions to occur at the negative
electrode:

M+H,0O+e"+Me*—MH,,+MeOH

H,0+e™+Me"—Y2H,+MeOH

M in the forgoing reactions may be a hydrogen absorbing
alloy, H,, may be absorbed hydrogen, and Me may be an
alkali metal.

The method may also include the step of conducting Me*
ions across the alkali ion conducting separator from the posi-
tive electrode to the negative electrode. In one embodiment,
the positive electrode is the electrode bearing a positive
charge on discharge and the negative electrode bears a nega-
tive charge on discharge.

A method of discharging a nickel-metal (hydrogen) hybrid
battery having a positive electrode containing nickel hydrox-
ide, a combination negative electrode containing a hydrogen
storage alloy electrode and a reversible hydrogen electrode,
an alkaline electrolyte, and a separator comprising a substan-
tially non-porous alkali ion conducting material includes the
step of generating an electric potential between the positive
and negative electrodes due in part to the following reaction
occurring at the positive electrode:

NiOOH+H,0+Me*+e™—Ni(OH),+MeOH

and due in part to the following reaction occurring at the
negative electrode:

MH, ,+M OH—M+H,0+e +Me*

Y2Hy+MeOH—+H,0+e +Me*

In one embodiment, M is a hydrogen absorbing alloy, H,, is
absorbed hydrogen, and Me is an alkali metal. The method
includes the step of conducting Me* ions across the alkali ion
conducting separator from the negative electrode to the posi-
tive electrode.

Reference throughout this specification to features, advan-
tages, or similar language does not imply that all of the
features and advantages that may be realized with the present
invention should be or are in any single embodiment of the
invention. Rather, language referring to the features and
advantages is understood to mean that a specific feature,
advantage, or characteristic described in connection with an
embodiment is included in at least one embodiment of the
present invention. Thus, discussion of the features and advan-
tages, and similar language, throughout this specification
may, but do not necessarily, refer to the same embodiment,
but may refer to every embodiment.

Furthermore, the described features, advantages, and char-
acteristics of the invention may be combined in any suitable
manner in one or more embodiments. One skilled in the
relevant art will recognize that the invention may be practiced
without one or more of the specific features or advantages of
a particular embodiment. In other instances, additional fea-
tures and advantages may be recognized in certain embodi-
ments that may not be present in all embodiments of the
invention.

These features and advantages of the present invention will
become more fully apparent from the following description
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and appended claims, or may be learned by the practice of the
invention as set forth hereinafter.

The invention claimed is:

1. A nickel-metal hydride (hydrogen) hybrid battery com-
prising:

a positive electrode comprising nickel hydroxide;

a combination negative electrode comprising a hydrogen
storage alloy electrode and a reversible hydrogen elec-
trode; and

a separator comprising a substantially non-porous solid
alkali metal ion super ion conducting material disposed
between the positive electrode and the negative elec-
trode, wherein the alkali metal ion is Na, K, Li, or com-
binations thereof.

2. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 1, wherein the separator comprises a sub-
stantially non-porous ceramic material.

3. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 1, wherein the separator comprises a mate-
rial having the formula Me,, 7Zr,Si P;_ O,, where 0=x<3,
and where Me comprises Na, K, [.i or any combination
thereof.

4. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 3, wherein the separator comprises a mate-
rial having the formula Na,, Zr,Si P;_ O,, where O=x<3.

5. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 1, wherein the separator comprises a mate-
rial having the formula Me ,RESi,0,, where Me comprises
Na, K, Li or any combinations thereof, where RE comprises
Y, Nd, Dy, Sm, or any combination thereof.

6. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 1, wherein the separator comprises a non-
stoichiometric alkali-deficient material having the formula
(MesRES1,0,,), _s(RE,0,.2S8i0,),, where Me comprises
Na, K, L1, or combinations thereof, where RE comprises Nd,
Dy, Sm, or combinations thereof and where 9 is the measure
of deviation from stoichiometry.

7. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 1, wherein the separator comprises a
monolithic flat plate, a monolithic tube, a monolithic honey-
comb, or supported structures of the foregoing.

8. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 1, wherein the separator comprises a lay-
ered alkali ion conducting ceramic-polymer composite mem-
brane, comprising alkali ion-selective polymers layered on
alkali ion conducting ceramic solid electrolyte materials.

9. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 1, wherein the separator is substantially
impermeable to hydrogen.

10. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 1, further comprising an alkaline electro-
Iyte.

11. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 10, wherein alkaline electrolytes are posi-
tioned on either side of the separator.
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12. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 11, wherein alkaline electrolytes are dif-
ferent.

13. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 1, wherein the hydrogen storage alloy
electrode comprises a mixture of hydrogen storage alloy and
electrolyte.

14. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 10, wherein the reversible hydrogen elec-
trode comprises a gas diffusion electrode that interfaces with
the alkaline electrolyte and a gaseous phase for electrochemi-
cal oxidation of hydrogen.

15. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 14, wherein the gas diffusion electrode
comprises at least one reaction layer having dispersed therein
a catalyst comprising platinum, wherein the at least one reac-
tion layer is in fluid communication with the alkaline electro-
lyte and wherein the gas diffusion layer is in fluid communi-
cation with a gas comprising hydrogen.

16. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 15, wherein the reversible hydrogen elec-
trode is positioned adjacent to the hydrogen storage alloy
electrode such that the reaction layer of the reversible hydro-
gen electrode is facing the hydrogen storage alloy electrode
and the gas diffusion layer is facing the hydrogen gas.

17. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 1, wherein the hydrogen storage alloy
electrode and the reversible hydrogen electrode have different
charge storage capacities.

18. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 1, wherein the combination negative elec-
trode comprises hydrogen storage alloy electrode material, an
alkaline electrolyte, and a platinum catalyst.

19. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 18, wherein the combination negative
electrode is unitary component.

20. The nickel-metal hydride (hydrogen) hybrid battery
according to claim, 1 wherein the combination negative elec-
trode comprises a platinum catalyst and an alkaline electro-
lyte dispersed onto the hydrogen storage alloy material.

21. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 15, wherein the combination negative
electrode comprises hydrogen storage alloy material, an alka-
line electrolyte, and reaction layer material of the reversible
hydrogen electrode.

22. The nickel-metal hydride (hydrogen) hybrid battery
according to claim 15, wherein the combination negative
electrode comprises hydrogen storage alloy material, an alka-
line electrolyte and the materials from the gas diffusion elec-
trode and the reaction layer of the reversible hydrogen elec-
trode.



